Preface by the Author

Chapter I. Phenol Production Process: Brief History and Trends

Chapter II. Phenol and Acetone Production Using a Cumene Method

II.1 Cumene to Cumene Hydroperoxide Oxidation

II.1.1 In Search of the Means for Improving the Commercial Process for Cumene Oxidation
II.1.1.1 The Chemical Approach
II.1.1.2 The Physical Approach. The Mass Transfer Effect on the Performance of a Commercial Process
II.1.2 Inhibition of Cumene to CHP Oxidation -- Problems and Solutions
II.1.3 Reactor Types and Optimum CHP Output Rate per Unit Volume of Reactors
II.1.4 Temperature, Pressure, Oxidizer Volume, and Cumene Conversion as Performance Factors
II.1.5 Oxygen Concentration in the Oxidizing Agent and Off-Gas
II.1.6 Safety Aspects of Cumene Oxidation Processes
II.1.7 Process Selectivity
II.1.8 Water-Emulsion Technology for Cumene Oxidation
II.1.9 “Dry” Technology for Cumene Oxidation
II.1.10 Off-Gas Treatment Stage
II.1.11 Cumene Stripping Stage

II.2 Technical Grade CHP Cleavage Technologies

II.2.1 General Overview
II.2.2 A One-Step Homogeneous CHP Cleavage Process
II.2.3 A One-Step “Boiling” CHP Cleavage Process
II.2.4 A Two-Step “Boiling” CHP Cleavage Process
II.2.4.1 Causes of Unstable and Hazardous Operation of Commercial Reactors
II.2.4.2 The Effect of Reflux Acetone on a “Boiling” Process Safety Level
II.2.4.3 Selectivity of a Two-Step “Boiling” Process
II.2.4.4 H_2SO_4 Concentration as a Process Stabilizing Factor
II.2.5 A Heterophase CHP Cleavage Process in Water-H_2SO_4
Table of Contents

II.2.6 A Two-Step Homogeneous CHP Cleavage Process
 II.2.6.1 Feed Composition
 II.2.6.2 Heat Removal and Safety
 II.2.6.3 Selectivity
 II.2.6.4 Process Operation in an Equimolar Phenol-Acetone Mixture
 II.2.6.5 Addition of a “Diluent”
II.2.7 Revamp of Obsolete Technologies and Plants
II.2.8 Capital Investment
II.2.9 Conclusions

II.3 Neutralization of CHP Cleavage Product

II.4 Separation and Purification of Products in a Phenol Process
 II.4.1 Technologies for Product Fractionation
 II.4.2 Quality of Phenol and Acetone
 II.4.2.1 Acetone Quality
 II.4.2.2 Phenol Quality
 II.4.2.3 The Problem of ortho-Cresol
 II.4.2.4 The Problem of Hydroxyacetone
 II.4.3 Hydrogenation of AMS into Cumene and Recovery of AMS Product
 II.4.3.1 Hydrogenation of AMS into Cumene
 II.4.3.2 Recovery of Target AMS
 II.4.4 Conclusions

II.5 Treatment of Phenol Tar as Waste Product

References

Глава III. Kinetics and Mechanism of Major Reactions in Phenol Production

III.1 Mechanism of Hydrocarbon Oxidation
 III.1.1 General Overview
 III.1.2 Radical Chain Propagation in Stable Cumene Oxidation
 III.1.3 The Role of Oxygen -- State of Knowledge
 III.1.4 The State of Oxygen in a Reaction Medium
 III.1.5 The Contributions of \(\text{O}_2^{\text{liquid}} \) and \(\text{O}_2^{\text{gas}} \) into a Cumene Oxidation Reaction
 III.1.6 Variable Concentration of Oxygen in the Oxidizing Agent
 III.1.7 Oxidation at a Variable Air Rate
Table of Contents

III.1 Oxidation under Varying Pressure

III.1.8 Oxidation under Varying Pressure

III.1.9 The Roles of O_2^{gas} and O_2^{liquid} in the Mechanism of Cumene Oxidation Reaction

III.1.10 Process Selectivity, in Regard to Contributions of O_2^{liquid} and O_2^{gas}

III.1.11 Orders of Reactions and Activation Parameters

III.1.12 Termination of Reaction Chains

III.1.13 Conclusions

III.2 Mechanism and Kinetics of Acid-Catalyzed Cumene Hydroperoxide Cleavage

III.3 Formation of α-Methylstyrene Dimers and ortho- and para-Cumylphenols

III.3.1 General Overview

III.3.2 Structure of AMS Dimers

III.3.3 Mechanism of Formation of AMS Dimers and Cumylphenols

III.3.4 Conclusions

III.4 Mechanism and Kinetics of Formation and Hydrolytic Conversion of DCP

III.5 Formation of Diacetone Alcohol and Mesityl Oxide

III.6 Hydroxyacetone Formation Routes in a Phenol Process

III.6.1 Mechanism of HA Formation

III.6.2 Conversions of Hydroxyacetone

III.6.2.1 Alkaline Conversion of Hydroxyacetone

III.6.2.2 Oxidative Conversion with NaOH Present

III.6.3 Hydroxyacetone Oxidation by Permanganates

III.6.4 HA Oxidation by KMnO$_4$ at Lower pH

III.6.5 Hydroxyacetone Oxidation by H_2O_2

III.6.6 Hydroxyacetone Oxidation by Air with Heterogeneous Catalyst

III.7 Formation of ortho- and para-Cresols

III.7.1 Cresol Formation at the Acetone/Phenol Fractionation Stage

III.7.2 Cresol Formation in a Phenol Tar Cracker System

III.8 Reaction Medium of a Phenol Process
Table of Contents

III.8.1 Reaction Medium of Cumene Oxidation
III.8.2 Reaction Medium of CHP/DCP Decomposition and DMBA Dehydration
 III.8.2.1 Water-Acid Solvent
 III.8.2.2 Organic Solvent: Phenol-Acetone-Cumene
III.8.3 Reaction Medium of the Neutralization Stage
III.8.4 Acetone as a Reaction Medium
III.8.5 Phenol as a Reaction Medium

References

Глava IV. Alternative Technologies for Phenol Production

IV.1 Benzene to Phenol Oxidation
 IV.1.1 Benzene to Phenol Oxidation With N₂O (The BTOP Process)
 IV.1.2 Technical Aspects of Oxidation With N₂O
 IV.1.3 Capital Investment Needs for Benzene Oxidation With N₂O
 IV.1.4 Manufacturing Cost for Benzene Oxidation With N₂O
 IV.1.5 Environmental Issues of Benzene Oxidation With N₂O
 IV.1.6 Conclusions regarding Benzene Oxidation With N₂O

IV.2 Joint Production of Phenol and Methyl Ethyl Ketone (MEK)
 IV.2.1 sec-Butylbenzene Oxidation
 IV.2.2 sec-Butylbenzene Hydroperoxide Cleavage
 IV.2.3 Fractionation and Purification of Target Products

IV.3 Cumene-Based Phenol and Acetone Production

IV.4 Wasteless Cumene-Based Process for Phenol-Acetone Production (WEPP)

IV.5 Conclusions

References